

Pergamon

(+)-trans-Camphenesulfonamide: A Novel Enantiomerically Pure Primary Sulfonamide

Franklin A. Davis*^{1a}, Robert Boyd, ^{1b} Ping Zhou^{1b} Nadia F. Abdul-Malik, ^{1b} and Patrick J. Carroll^{1c}
Department of Chemistry, Temple University, Philadelphia, PA 19122-2585
Department of Chemistry, Drexel University, Philadelphia, PA 19104
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104

Summary: (+)-trans-Camphenesulfonamide (3) is prepared in two steps (54%) from camphorsulfonamide 1, via a acid catalyzed rearrangement of the corresponding carbinol 2a. Copyright © 1996 Elsevier Science Ltd

Primary sulfonamides (RSO₂NH₂) serve as precursors of building blocks widely used in organic synthesis, such as N-sulfinylsulfonamides, N-sulfonylimines, sulfonylisocyanates and N,N-dihalosulfonamides.² Enantiopure sulfonamides (R*SO₂NH₂), required for all of the above reagents, are generally rare and not easily accessible. Recently we described the asymmetric synthesis of previously unavailable α -functionalized primary sulfonamides by reaction of electrophiles with the dianions of (camphorsulfonyl)imines.³ While yields were good to excellent, the diastereoselectivities (2-90%) was variable. It occurred to us that (1S)-(+)-10-camphorsulfonamide (1) might serve as source of enantiopure primary sulfonamides, because of the well known ability of camphor and its derivatives to undergo a variety of acid catalyzed rearrangements.⁴ Although 1 has been used in the asymmetric synthesis of N-sulfonyloxaziridines, it is less than ideal as a primary sulfonamide building block because of its conformationally mobility, the distance between the stereocenters and the active site, and the fact that it is easily dehydrated to

Scheme 1

9
 Me 7 Me 8 Me 4 Me 4 Me 5 Me 5 10 20 $^$

the camphorsulfonylimine.⁵ In this letter we describe the enantioselective synthesis of *trans*-camphenesulfonamide (3), which does not suffer from these limitations, in two steps from (+)-1 (Scheme 1).

(1*S*)-(+)-10-camphorsulfonamide (1), prepared as previously described from (+)-10-camphorsulfonyl chloride and ammonia,^{5,6} was initially reduced with NaBH₄. Even under optimum conditions (-30 °C in MeOH) only an 88:12 mixture of the *exo:endo* carbinols **2a** and **2b** was isolated in 83% yield. Best results were obtained by addition of a THF solution of (+)-1, typically 0.44 molar, to 1.25 equivalents of LiAlH₄ (1.0 M in THF) at -78°C. Under these conditions **2a/2b** (97:3) were isolated in greater than 94% yield which could be separated by flash chromatography.^{7,8} The assignment of *exo*-position to the hydroxyl group in the major isomer **2a** was based on the well known preference for *endo* reduction of norbornyl ketones⁹ and NOE experiments. An NOE interaction was observed between the CHOH and the methyl protons in the minor carbinol **2b** which was absent in **2a**.

We next turned our attention to the acid catalyzed rearrangement of carbinols 2a/2b. Typically 5.0 mmol of the 97:3 mixture of 2a/2b was refluxed in the appropriate solvent with an acid catalyst (Table 1). Work-up consisted of washing the organic phase with water, brine and drying. Flash chromatography gave two products. The major product was identified as (+)-transcamphenesulfonamide (3) and the minor product as tricyclane sulfonamide 4 based on their spectral properties. The absorption at δ 6.05 ppm in the ¹H NMR of 3 is indicative of a vinyl proton with the alkene carbons at δ 118.4 and 173.5 ppm, respectively in the ¹³C NMR spectrum. The trans nature of the double bond was confirmed by single crystal X-ray analysis (Figure 1). 10,11 The single absorption for the two methyl group at δ 0.9 ppm, the fact that there are only five carbon resonances in the ¹³C NMR and that it is not optically active support its highly symmetrical structure.12 When 2a/2b were dissolved in conc. H2SO4, stirred for 1 h and poured over ice camphenesultam (5) was isolated in 83% yield. The structure of 5 is based on the NH absorption at 3258 cm⁻¹ in its IR spectrum and analysis of the ¹H, ¹³C NMR spectra as well as HETCOR and NOE experiments. The structure of sultam 5 also finds precedent in the acid catalyzed rearrangement of 10- and 9-(2-hydroxy)bornanesulfonates to an optically inactive camphene sultone (5, NH = 0).13 Evaluation of 5 ($(\alpha)^{20}D + 0.71$) using the chiral solvating agent (S)-(+)-2,2,2-trifluoro-1-(9-anthryl)-

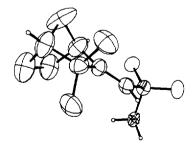


Figure 1. Structure of (+)-3 in the solid state (some hydrogens not shown).

entry	Solvent (mL)	Acid Catalyst		(+) -3	4
		(mol %)	time (h)	% yield ^b (%	ee)c
1	Toluene (20)	TsOH (15)	0.5	54 (55)	9
2		TsOH (15)	2.0	58 (43)	4
3		TsOH (15)	12	59 (38)	4
4		TsOH (1-2)d	30	61 (72)	14
5		H ₂ SO ₄ (1-2)	8	65 (73)	14
6		Amberlist Resin	16	67 (73)	12
7	Toluene (200)	TsOH (1-2)	120	67 (90)	5
8	Xylenes (20)	TsOH (1-2)	6	72 (71)	17
9	Xylenes (200)	TsOH (1-2)	16	64 (88)	8

Table 1. Acid Catalyzed Rearrangement of Carbinols 2a/2ba

- a) Carried out on 5.0 mmol of carbinol substrate.
- b) GLC yields using a 30m x 0.32 mm SPB-30 column
- c) Based on the maximum observed rotation of optically pure (+)-3.
- d) Values calculated based on 15% recovery of starting material.

ethanol indicated that it was racemic.

The results summarized in Table 1 reveal that the highest yields and ee's (88-90%) of (+)-3 were obtained when the rearrangement was carried out in dilute toluene or xylene (entries 7 and 9). The lower temperature of toluene (110 °C) resulted in a significant increase in the reaction time compare to xylene (137 °C, compare entries 7 and 9). Two crystallization of the crude material ([α]²⁰D +172.19) from acetone/n-hexane gave (+)-3, [α]²⁰D +190.5 (c 1.0 CHCl₃) in 58% yield and >97% ee. The optical purity was verified by forming the sulfonyl urea with (S)-(-)- α -methylbenzylisocyanate followed by HPLC analysis using a reverse phase C-18 column (40% MeCN:H₂O).

The formation of the rearrangement products listed in Scheme 1 can be rationalized in terms of bridged ion 7 which loses a C-10 or C-6 proton to form (+)-3 and 4, respectively or undergoes a methyl shift to eventually give (\pm) -5. What remains unclear, and the subject of future studies, is the influence of dilution on the optical purity of (+)-3 and the dominate shift in the rearrangement products to (\pm) -5 in the presence of conc. H₂SO₄.

2a
$$OH_2^+$$
 OH_2^+ OH_2^+

Acknowledgments. We thank Drs. Ellen Baxter and Allen Reitz, the R. W. Johnson Pharmaceutical Research Institute for helpful discussion. This work was supported by a grant from the National Science Foundation.

References and Notes

- (a) Address correspondence to this author at Temple University. (b) Drexel University. (c) University of Pennsylvania.
- (a) For reviews on the chemistry of sulfonamides see: Andersen, K. K. in Comprehensive
 Organic Chemistry, Barton, D.; Ollis, W. D. series Eds., Pergamon Press, Oxford, 1984, Vol 3,
 Chapter 11. (b) Tanaka, K. in The Chemistry of Sulphonic Acids, Esters and their
 Derivatives, Patai, S., Rappoport Z., Eds.; John Wiley & Sons, 1991, Chapters 11, p 401. (c)
 Hoyle, J. in ibid., Chapter 10, p 351.
- 3. Davis, F. A.; Zhou, P.; Carroll, P. J. J. Org. Chem. 1993, 58, 4890.
- 4. For a review of camphor and its derivatives see: Money, T. Nat. Prod. Repts. 1985, 253.
- (a) Davis, F. A.; Jenkins, Jr., R. H.; Awad, S. B.; Stringer, O. D.; Watson, W. H.; Galloy, J. J. Am. Chem. Soc. 1982, 104, 3206.
 (b) Davis, F. A.; Towson, J. C.; Weismiller, M. C.; Lal, S.; Carroll, P. J. J. Am. Chem. Soc. 1988, 110, 8477.
- Towson, J. C.; Weismiller, M. C.; Lal, G. S.; Sheppard, A. C.; Kumar, A.; Davis, F. A. Org. Syn. Coll. Vol. VIII, 1993, 104.
- 7. All new compounds gave satisfactory elemental analysis and their spectral properties were consistent with their structures.
- 8. exo-Alcohol (-)-2a; mp 149-152 °C; $[\alpha]_D^{25} = -44.1$ (c = 1.0, MeOH); endo-alcohol (+)-2b; mp 154-156 °C (Et₂O); $[\alpha]_D^{25} = +35.4$ (c = 1.0, MeOH).
- 9. Brown, H. C.; Muzzio, J. J. Am. Chem. Soc. 1966, 88, 2811.
- 10. Details of the X-ray structure will be reported elsewhere.
- 11. trans-Camphenesulfonamide; (+)-3; mp 111-112.5 °C.
- 12. Tricyclane sulfonamide 4; mp 102-105 °C.
- (a) Wolinsky, J.; Dimmel, D. R.; and Gibson, T. W. J. Org. Chem. 1967, 32, 2087. (b)
 Dimmel, D. R.; Fu, W. Y. J. Org. Chem. 1973, 38, 3778. (c) Dimmel, D. R.; Fu, W. Y. J. Org. Chem. 1973, 38, 3782.

(Received in USA 29 January 1996; revised 19 March 1996; accepted 20 March 1996)